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Abstract-A new method, the harmonica1 transmission model (HTM), has been developed accounting for 
the effect of the line structure of gaseous absorption in multidimension~ radiative heat transfer calculations. 
The method is derived from a development of the absorption coefficient and the spectral intensity in Fourier 
series and a least-square fit over the equation of radiative transfer. For the one-dimensional case, an 
analytical solution for the spectral mean transmissivity is derived, which can be directly compared to band 
models. For the multidimensional case, a set of differential equations is presented, which is of the same 
mathematical form as the equation of radiative transfer. Therefore, any suitable numerical method for the 
solution of the radiative transfer equation can also be employed to solve the differential equation resulting 

from the HTM. 

1. INTRODUCTION 

IN THE last two decades several methods have been developed for the numerical solution of the equation of 
radiative transfer [I, 21. When dealing with combustion problems, the equations of fluid mechanics and 
radiative transfer have to be solved simultaneously. Preferentially those methods are advantageous, where the 
radiative transfer equation can be written as a set of differential equations of the space coordinates. Among 
these methods, at present the most established ones are the flux method [3], the moment or spherical harmonics 
method [&6] and the discrete ordinate method [7, 81. 

For high accuracy the computation of radiative transfer should be carried out on a spectral basis. The 
difficulty of a spectral computation of the radiative transfer arises from the radiative properties of the gases. 
Infrared absorption and emission of gases is caused by vibration-rotation bands, which consist of overlapped 
spectral lines. Because of the line structure of such a vibration-rotation band the absorption coefficient of 
gases is strongly varying with wavelength. The line structure depends on total pressure as well as on temperature. 
As the change of the line structure of a vibration-rotation band with total pressure (effect of pressure 
broadening) has a strong influence on the absorption and emission behaviour of the gas, the line structure 
must be accounted for in most of the radiative transfer computations of technical combustion systems, which 
operate at elevated pressures. 

In one-dimensional radiative transfer problems, the line structure of such a vibration-rotation band can be 
accounted for by use of band models [9-l 11. All these band models have in common, that a representative 
spectral mean transmissivity, averaged over a few spectral lines, can be determined. As the transmissivity is 
an integral term, resulting from an integration of the radiative transfer equation over the optical depth, band 
models are integral methods. Therefore, in multidimensional radiative transfer problems, band models can 
only be employed in combination with integral transport methods like the zone method or the Monte-Carlo 
method, but not in combination with differential transport methods like the Aux and the spherical harmonics 
method, which are usually preferred in combustion modelling. 

In this paper, a new method, the harmonica1 transmission model (HTM), is presented. Combined with 
differential transport methods for the solution of the radiative transfer equation, the HTM accounts for the 
effect of the line structure in multidimensional radiative transfer calculations. Since the line structure of a 
vibration-rotation band is strongly influenced by the total pressure, this method is of particular interest, when 
the effect of total pressure on the radiative transfer of combustion processes is of impor~nce. A typical 
application is the theoretical study of radiative heat transfer in gas turbine combustors. 

The HTM is based on the same physical principles, that are used in the established band models to describe 
the line structure of a vibration-rotation band. The basic idea of the HTM is, that the spectral averaging is 
done directly over the monochromatic radiative transfer equation in contrast to the band models, where the 
averaging is done over the monochromatic transmissivity. 
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NOMENCLATURE 

tl line spacing 

F,, i,, Fourier coefficients of 
monochromatic intensity 

F intensity vector 

90 +,i Fourier coefficients of 
monochromatic absorption coefficient 

G absorption matrix 

H, H transformation matrices 

L monochromatic intensity 
I h.,, monochromatic intensity of the black 

body 

k, monochromatic absorption 
coefficient 

s direction vector. 

Greek symbols 
^, i line half-width 
1” wavelength 
7 transmissivity 
f mean transmissivity 

4 dimensionless wavelength parameter 
0+ direction vector of the outgoing intensity 

at the wall 
!z direction vector of the incoming intensity 

at the wall. 

n normal vector of the wall Subscript 
S line intensity H.-T. harmonica1 transmission model. 

By the application of the HTM, the resulting differential equations have the same mathematical form as the 

monochromatic equation of radiative transfer. Therefore, for multidimensional radiative transfer computation, 
the equations can be solved by using any suitable method for the solution of the radiative transfer equation. 
However, for the one-dimensional case the set of differential equations derived from the HTM can be solved 

analytically. As a result, the spectral mean transmissivity is obtained, which can be directly compared to the 
mean transmissivity of the well-known band models. Consequently, in the one-dimensional case the HTM can 
be directly compared with band models. 

2. THEORETICAL BACKGROUND 

If gases are considered, scattering can be neglected and the stationary monochromatic equation of radiative 
transfer in thermal equilibrium can be written as 

s.(VI,) = -k;.(Z, -I,,). (I) 

Because of the line structure of the vibration-rotation bands of infrared-active gases, the spectral absorption 
coefficient kA is strongly varying with the wavelength 1. In addition, kj. is in general also dependent on the 
properties of the gas, as well as on the temperature and the partial and total pressure of the gas. A familiar 
way, used by all band models, to describe the line structure of a vibration-rotation band is to employ the 

dimensionless parameters S/d and ;l/d [12-l 51. 
For a single spectral line the line intensity S is defined as 

S= k,dL 
I 

(2) 
I 

In_ 

d- 

FIG. 1. Definition of the line intensity S and half-width 7. 
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As shown in Fig. 1, y represents the half-width at half-height of the spectral line. The vibration-rotation bands 
of gases consist of an array of spectra1 lines, which under usual thermodynamic conditions overlap at least 
partially. Similarly to a single line, an equivalent half-width y and line spacing d can be defined for an array 
of a few lines [13]. For the majority of the gases, that give a significant contribution to the radiative heat 
transfer of combustion processes, the value of 

represents the mean absorption coefficient, which the equivalent half-width y and the equivalent line spacing 
d can be computed [16, 171 or can be taken from tables [13]. 

By use of band models a mean transmissivity 

(4) 

can be determined. In general, the mean transmissivity Z depends on the quantum mechanical parameters S/d, 
y/d and the optical pathlength. 

3. ANALYSIS: THE HARMONICAL TRANSMISSION MODEL (HTM) 

From a quantum mechanical analysis of the absorption process of two-atomic gases [16], it can be shown 
that the line structure of a vibration-rotation band consists of nearly equally spaced spectra1 lines of the same 
line intensity Sand half-width y. Such a regular structure is also a good approximation for linear, symmetrical 
three-atomic molecules like carbon dioxide. Therefore, the adequate band mode1 to describe the absorption 
behaviour of such gases is the regular Elsasser model. 

By the Elsasser band model, the structure of a vibration-rotation band is assumed to consist of regularly 
spaced lines of equal intensity. The lines show a Lorentz profile and do partially overlap. The absorption 
coefficient of such an Elsasser band is given by (see Fig. 2) 

The derivation of the HTM is based on the fact that the absorption coefficient kl of a vibration-rotation band 
shows a periodic structure over a narrow wavelength interval. Because of the periodicity of the line structure, 
the absorption coefficient kj, and the spectral intensity IA are expanded into complex Fourier series 

k,(4) =gO+g,.e’~+g_,.e-‘“+~.. (6) 

Ii(f$) =F,+F,.e’~+F_,.e-‘~+... (7) 

FIG. 2. Line structure of a vibration-rotation band (Elsasser band model). 
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where 

AS the spectral intensity of the black body 1,,1 is not varying in the narrow wavelength interval [0 < Ai/d < I], 

the expansion of &A in a Fourier series contains only zero-order terms 

&J(4) = &L*. (8) 

The coefficients g,z of the Fourier expansion of the absorption coefficient (equation (6)) are determined from 
equation (5) using a least-square fit 

g,, = i; [:I ,, kl.Flsa,,er - e “I9 d4. (9) 

The resulting coefficients are 

Because kn,elsasaer is symmetrical to 4 = 7~, it is evident that the imaginary part of the Fourier coefficients g,, 
vanishes. Therefore, the complex expansion of k; can be written as a real one 

k, =g,,+2g,*cos4+2gz*cos2$+.... (11) 

In Fig. 3 it is shown how the line structure of an Elsasser band is approximated by the HTM (equation (1 I)) 
of first and second order. 

The Fourier expansions of the absorption coefficient and the intensity (equations (6) and (7)) are inserted 
into the monochromatic equation of radiative transfer (equation (1)) and the equation of radiative transfer is 
averaged over the period interval [+ = 0, CJ = 27~1. Because of the orthogonality relation of the Fourier series, 
averaging in the sense of a least-square fit is achieved by multiplying the equation of radiative transfer by e”‘“, 
where n = . -2, -1,O,1,2.~~andintegratingfrom+=Oto2~ 

s 

2n 
(equation (1)) - eind d&. (12) 

Q=” 

As a result of that quadrature scheme, a coupled system of transfer equations for the complex Fourier 

FIG. 3. Line structure as approximated by the HTM for y/d = 0.12. 
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coefficients of the intensity Fr,, F, , F_ , , is obtained 

S’ V 

F -2 

F-1 

F0 

F, 

F? 

r 

=- 

...... .- ....... ....... 
... go g_, g_* ... ...... 

... 
91 go g-1 g-2 “’ ‘.’ 

.” 92 .4l go 9-l g-2 “’ 

... ... 92 91 90 9-l ... 

... ... ... 92 91 .40 “’ 
....... ....... ....... J 

Equation (13) can be written in a short form as 

s.(VF) = -G(F-I,,,) 

F -2 

F- I 

Fo 

F, 

F2 

- 

0 
0 

4J.i 
0 

0 

J 

(13) 

(14) 

It should be noted that the intensity vector F as well as the absorption matrix G are dependent on wavelength. 
The absorption matrix G is complex, hermitian and of the Toeplitz type [18]. 

4. ONE-DIMENSIONAL RADIATIVE TRANSFER USING THE HARMONICAL TRANSMISSION 
MODEL 

For the one-dimensional case, an analytical solution of equation (13) can be derived. Under the assumption 
that the incident intensity at x = 0 is constant over 4 = 27c(Ai/d) and that there is no emission of radiation 
(Zbi = 0), an expression for the spectral mean transmissivity can be derived from the HTM. The spectral mean 
transmissivity can directly be compared to band models. 

In order to derive the mean transmissivity from the HTM, the solution of equation (13) in the form 

d 

dx 

F -2 

F 

io’ 

F, 

F2 

=- 

....... ....... ....... 
... go g, g2 ......... 

... 

91 90 91 92 ...... 

... 92 91 90 91 s2 ... 

...... g2 91 90 91 ... 

... ... ... 92 91 90 ... 
....... ....... ....... 

with y, given by equations (lOa)-( 1 Od) and with the initial conditions 

is required. 

F, = 
To fori=O 

0 fori#O 

F -2 

F- I 

Fo 

F, 

F2 

(15) 

(16) 

If theg, are chosen according to equations (lOa)-(lOd), the absorption matrix G becomes symmetrical and 
real. In this case the system of equations (equation (15)) can be decoupled for the first- and second-order 
approximation. In this paper only the first-order approximation is considered. For a first-order approximation 
equation (15) can be decoupled by the transformation 

where 

- 1 -1 -1- -~~ 
242 242 242 

H= 4 0 ; 

1 1 -1 -____ 
-242 2J2 2J2_ 

F-1 

Fo 

F, 
(17) 

(18) 
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N-’ = 

The solution of the resulting decoupled system 

for the initial condition (equation (16)) is 

(19) 

1 1 _ 
F, = F_, = j pIo*[e- (Y”+jzY,)x_e-(u”-~‘2.~,)~], (22) 

Since F, is the spectral averaged value of the intensity, the spectral averaged transmissivity i,.,, which results 
from the HTM, is defined by 

F0 7u.r =-=e 
10 

-yo’ cash (429 ,x) (23) 

or with the use of equations (10a) and (lob) 

fH _T = e -(Si‘k cash 42e-‘2”“‘“” sx > (24) 

This is a very simple formula to describe the spectral averaged transmissivity of a vibration-rotation band 
with equally spaced lines of the same intensity. 

In a similar way also a closed-form expression has been derived for the second-order approximation. Figure 
4 illustrates a comparison of the transmission curves of the Elsasser band mode1 and the HTM of zeroth, first 
and second order. From the comparison of the transmission curves it can be seen that even the HTM of first 
order gives quite a good approximation to the Elsasser model, and that the HTM of second order is in nearly 
perfect agreement to the Elsasser model with the added advantage of more accessible computation. 

-y/d = 0.12 
(1) Elsasser 
(2) Harm.-Trans. O(0) 
(3) Harm.-Trans. O(1) 
(4) Harm.-Trans. O(2) 

0 

d-3 
II 11 ‘I 6 “‘I II (1 0 

-2 -1 0 1 

log(S/d*x) 

FIG. 4. Comparison of the transmission curves. 
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5. MULTIDIMENSIONAL RADIATIVE TRANSFER USING THE HARMONICAL TRANSMISSION 
MODEL 

For multidimensional radiative transfer calculation, the system of differential equations (equation (13)) 

must be solved on the multidimensional domain. The coefficients of the matrix G are taken from e 
P 

uations 

(lOa)-( 10d). In a first-order approximation the set of three decoupled differential equations 

F,+&,+F-,) 
, r - , 

J2 
F,+i(F,+F-,) 

! 

go+&, 0 0 
S’ v JW -E 11 = _ o go o * 

F,-- &+Fm,) 0 

J2 
0 90-J%, 

L - 
1< 

J2 Ib.i 
JW-F-1) - 0 

F&(F,+F_,) i I I b.1 
J2 

must be solved. 
(25) 

For ideal diffusely reflecting walls, the boundary conditions are 

F@+) = (1 -P)&J(Q+)+ f n;= o 
s 

F,(C) * (n, a-) da (26) 

[F,(R+)+F_,(R+)] =p 
s 

Zn 

?l n-=0 
[F,(IZ-)+F_,(n-)].(n,n-)dn (27) 

[F,(n+)-F_,(R+)] = c 
s 

2n 

71 n-=0 
[F,(n-)-F_,(IR~)].(n,n-) dR. (28) 

The direction vector S’2- points to the wall and R+ points away from the wall. The direction of n is perpendicular 
to the wall and points away from the wall (see Fig. 5). 

With the approximations made here, it can be shown that the second equation of the system 

s*(V$(F, -F- ,)I) = -g0*]$(F, -F- ,)I (29) 

together with the boundary condition 

[F,(&-k+)-Fm,(R+)] = e 
s 

” [F,(O-)-F_,(a-)]*(n,fl-)dC2 
71 n-=iJ 

(30) 

has the trivial solution 

(F,-F_,) =O. (31) 

This fact is easily understandable, when the vanishing sine terms in the Fourier expansion of the absorption 
coefficient are considered. Therefore, also no sine terms in the Fourier expansion of the intensity should be 
expected, which is formally expressed by F, = F_ , 

Thus it is sufficient to solve the remaining two differential equations 

i 

i 

R+ 

n 

\ R- 

FIG. 5. Definition of R+, a- and II. 
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together with the boundary conditions 

F,@‘) = (1 -_p)l,,j.(n+)+ c x 6’_ ,1 FO(Q- ) - (n, a- 1 dQ 
s 

[F,(n+)+F_,(R+)] = 9 s Zn 

r R -0 
[F,(Qm)+F_,(C2 ~)]*(n,Q-) dR. 

(33) 

(34) 

If the substitutions 

A ==F”+&F,+F-,) 
VI2 

(35) 

B=F,--&+F_,) 
J2 

(36) 

a = g,+J2g, (37) 

h = go-J2g, (38) 

are introduced, the resulting equations show the same formal structure as the monochromatic equation of 

radiative transfer in a participating medium (equation (1)) 

s * (VA) = - a(A -I,,,) (39) 

and 

s*(VB) = -h(B-Z,,J) (41) 

Here, the main advantage of the HTM is obvious. The resulting equations are of the same mathematical form 
as the monochromatic equation of radiative transfer (equation (1)). Therefore, any differential method, which 

is usually applied to solve the basic equation of radiative transfer (equation (l)), may also be used to solve 
equations (39) and (41), resulting from the HTM. The only difference arising from the employment of the 

HTM is, that two equations (one for ‘absorption coefficient’ a and one for b) have to be solved simultaneously. 
From the solutions A, B of these two equations, the line structure of the spectral intensity at every local 

position can be computed from 

where 

I($) = ;(A+@+ -;Ti(A-B)~cos (4) (43) 
\i 

(44) 

6. REGIONS OF VALIDITY 

The coefficients g,, of the Fourier expansion of the absorption coefficient k, are determined from equations 
(lOa)-(1Od). If the line structure parameter y/d is small and the order of approximation is not chosen high 
enough, it is possible, that the absorption coefficient might be negative in the interval [4 = 0, 4 = 2n], as 

shown in Fig. 6. 
To avoid negative values of kl, the order of approximation must be chosen according to Table 1. 

As y/d largely depends on total pressure, the suitability of different orders of approximations depends on 
total pressure. The regions of total pressure, to which the different orders of approximation are applicable, 
can be estimated, if a dilute mixture of the infrared-active gas in nitrogen is assumed (see Table 2). The values 
of y and d for CO and CO, are taken from ref. [13]. 
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*- 

M- 

I\ 
I 

y/d = 0.08 

- Elswsser 

---Hwm.-Trans. O(1) 

0 \ , \ , \ , 

WY V/l 

II 8 1 ‘I 11 1 I 
0 1 2 3 

M/d 

FIG. 6. Negative value of k, for y/d = 0.08 and first-order approximation 

Table 1. Region of validity of the different 
orders of approximation 

First order 
Second order 
Third order 

>ln 2/2n = 0.110 
>ln :/47t = 0.0781 
zO.0691 

Table 2. Regions of total pressure for application of the 
HTM 

pt.?., [atm] at 300 K 
CO at 4651 pm CO2 at 4255 pm 

First order 
Second order 
Third order 

26.7 ao.55 
24.7 20.39 
24.2 ao.34 
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MODELE HARMONIQUE DE TRANSMISSION: APPROCHE NOUVELLE DU CALCUL 
DE TRANSFERT RADIATIF DANS LES GAZ EN TENANT COMPTE DE 

L’ELARGISSEMENT PAR PRESSION 

Rbum~Une nouvelle methode, le modele harmonique de transmission (HTM), a Cte developpee en 
tenant compte de l’effet de l’absorption gazeuse a structure lintaire dans les calculs de transfert radiatif 
multidimensionnel. La methode est dirrivee d’un dtveloppement du coefficient d’absorption et de I’intensite 
spectrale en serie de Fourier et dune adaptation par moindres car&. Pour le cas monodimensionnel, une 
solution analytique est obtenue de la transmittivite spectrale moyenne qui peut etre comparte directement 
aux modtles de bandes. Pour le cas multidimensionnel, on presente un systtme d’bquations differentielles 
lineaires qui est de la m&me forme mathimatique que l’equation du transfert radiatif. Par suite, toute 
methode numtrique convenable pour la resolution de l’tquation du transfert radiatif peut Ctre aussi 

employee pour rtsoudre l’equation differentielle resultant de la HTM. 

DAS HARMONISCHE TRANSMISSIONSMODELL : EIN NEUES VERFAH REN FUR 
DEN MEHRDIMENSIONALEN STRAHLUNGSAUSTAUSCH IN GASEN 

Zusammenfasung-Es wurde eine neue Methode, das Harmon&he Transmissionsmodell (HTM), entwick- 
elt, das es ermiiglicht, bei der mehrdimensionalen Berechnung des Strahlungsaustausches die Linienstruktur 
im Absorptionsverhalten von Gasen zu beriicksichtigen. Die Herleitung der Methode basiert auf einer 
Entwicklung sowohl des Absorptionskoeffizienten als such der spektralen Intensitat in Fourier-Reihen 

und einer anschlieI3enden Approximation der Strahlungstransportgleichung im Sinne kleinster Fehler- 
quadrate. Fiir eindimensionale Probleme ergibt sich eine analytische Liisung fur die mittlere Transmission, 
die direkt den Bandmodellen gegeniibergestellt werden kann. Bei mehrdimensionalen Problemen wird 
ein System von Differentialgleichungen angegeben, dessen Gleichungen dieselbe mathematische Struktur 
aufweisen wie die Strahlungstransportgleichtmg. Somit kann jede numerische Methode, die zur Ldsung 
der Strahlungstransportgleichung geeignet ist, such zur Lijsung des Differentialgleichungssystems, das sich 

aus dem Harmonischen Transmissionsmodell ergibt, eingesetzt werden. 

FAPMOHH9ECKAX MOflEJIb: HOBbIR I-IO~OA K PACXETY MHOFOMEPHOF0 
PA~HAI@iOHHOl-0 TEITJIOHEPEHOCA B FA3AX l-IPH YqETE YBIHPEHHII HOA 

AEtiCTBHEM WBJIEHHII 

AaoTlrmPPaspa6oraH ~O~blfi Meson, a HMeHHo, raphfomiYecKan Monenb nponycKaHria, 06bKCHXm- 

man 3+#wrr nmie&raTok crpyK~ypbr nornomemin B ra3e npa pacwrax bmoroMeprror0 panriamioHHor0 

TennonepeHoca. npexno*eHHbrii MeTon 3aKnwiaeTcK B pa3norcetum Ko3+&imie~a nornomeHHn H 

CneKTpanbHOiaHTeHC~BHocraBpaabl~ypbeH HCnOab30BaHHH B )‘paBHeAHHIKWiaIUiOHHOrO nelY?HOCa 

bwrona HaRMeHbUlHX KBaJ@iTOB. B OnlioMepHOM cnpae nonygeiio aHlUlHTH'IeCllO'2 pemeeae AJln cpen- 

Hero no cnercrpy ~03t#a$simieura nponycaamin, ~0Topoe MOX~HO Henoqe~crse~o CpaBHriTb C pe3yJIbTa- 

TaMH 30HHblX bfonenefi. &In hmoroh5epuoro cnynan rrpewreneHa CHCTeMa AEi~~HWUlbHbiX 

YpaeHerndi, SiMelOWiX TaKylo Kre MaTeMaTliWCK)no @PM)‘, Ki3K Ii PBHeHHe IWTHaIUiOHHOrO nel.=HoCa, 

CnenoeaTenbHo, nnK pemeHan nm@@epe~anbHoro ypanHeHrin, nonyveHHor0 Ha OwoBe rapMoHmree- 

KOB kfonensi, MoXer ricnonb30BaTbCK nfo6oii ¶icnemibtk hwron, ronH& n.im pemeHHn @aBHeHHK 

panriamroHHor0 nepe.HoCa. 


