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Abstract—A new method, the harmonical transmission model (HTM), has been developed accounting for
the effect of the line structure of gaseous absorption in multidimensional radiative heat transfer calculations.
The method is derived from a development of the absorption coefficient and the spectral intensity in Fourier
series and a least-square fit over the equation of radiative transfer. For the one-dimensional case, an
analytical solution for the spectral mean transmissivity is derived, which can be directly compared to band
models. For the multidimensional case, a set of differential equations is presented, which is of the same
mathematical form as the equation of radiative transfer. Therefore, any suitable numerical method for the
solution of the radiative transfer equation can also be employed to solve the differential equation resulting
from the HTM.

1. INTRODUCTION

In THE last two decades several methods have been developed for the numerical solution of the equation of
radiative transfer {1, 2]. When dealing with combustion problems, the equations of fluid mechanics and
radiative transfer have to be solved simultaneously. Preferentially those methods are advantageous, where the
radiative transfer equation can be written as a set of differential equations of the space coordinates. Among
these methods, at present the most established ones are the flux method {3], the moment or spherical harmonics
method [4-6] and the discrete ordinate method [7, 8].

For high accuracy the computation of radiative transfer should be carried out on a spectral basis. The
difficulty of a spectral computation of the radiative transfer arises from the radiative properties of the gases.
Infrared absorption and emission of gases is caused by vibration-rotation bands, which consist of overlapped
spectral lines. Because of the line structure of such a vibration—rotation band the absorption coefficient of
gases is strongly varying with wavelength. The line structure depends on total pressure as well as on temperature.
As the change of the line structure of a vibration-rotation band with total pressure (effect of pressure
broadening) has a strong influence on the absorption and emission behaviour of the gas, the line structure
must be accounted for in most of the radiative transfer computations of technical combustion systems, which
operate at elevated pressures.

In one-dimensional radiative transfer problems, the line structure of such a vibration-rotation band can be
accounted for by use of band models [9-11]. All these band models have in common, that a representative
spectral mean transmissivity, averaged over a few spectral lines, can be determined. As the transmissivity is
an integral term, resulting from an integration of the radiative transfer equation over the optical depth, band
models are integral methods. Therefore, in multidimensional radiative transfer problems, band models can
only be employed in combination with integral transport methods like the zone method or the Monte-Carlo
method, but not in combination with differential transport methods like the flux and the spherical harmonics
method, which are usually preferred in combustion modelling.

In this paper, a new method, the harmonical transmission model (HTM), is presented. Combined with
differential transport methods for the solution of the radiative transfer equation, the HTM accounts for the
effect of the line structure in multidimensional radiative transfer calculations. Since the line structure of a
vibration—rotation band is strongly influenced by the total pressure, this method is of particular interest, when
the effect of total pressure on the radiative transfer of combustion processes is of importance. A typical
application is the theoretical study of radiative heat transfer in gas turbine combustors.

The HTM is based on the same physical principles, that are used in the established band models to describe
the line structure of a vibration—rotation band. The basic idea of the HTM is, that the spectral averaging is
done directly over the monochromatic radiative transfer equation in contrast to the band models, where the
averaging is done over the monochromatic transmissivity.
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NOMENCLATURE

d line spacing S direction vector.
Fy... ., Fourier coefficients of

monochromatic intensity Greek symbols
F intensity vector Y line half-width
Yo.-- v+, Fourier coefficients of p) wavelength

monochromatic absorption coefficient T transmissivity
G absorption matrix T mean transmissivity
H,H  transformation matrices ¢ dimensionless wavelength parameter
I monochromatic intensity QO+ direction vector of the outgoing intensity
I,,  monochromatic intensity of the black at the wall

body Q- direction vector of the incoming intensity
k, monochromatic absorption at the wall.

coefficient
n normal vector of the wall Subscript
S line intensity H.-T. harmonical transmission model.

By the application of the HTM, the resulting differential equations have the same mathematical form as the
monochromatic equation of radiative transfer. Therefore, for multidimensional radiative transfer computation,
the equations can be solved by using any suitable method for the solution of the radiative transfer equation.
However, for the one-dimensional case the set of differential equations derived from the HTM can be solved
analytically. As a result, the spectral mean transmissivity is obtained, which can be directly compared to the
mean transmissivity of the well-known band models. Consequently, in the one-dimensional case the HTM can
be directly compared with band models.

2. THEORETICAL BACKGROUND

If gases are considered, scattering can be neglected and the stationary monochromatic equation of radiative
transfer in thermal equilibrium can be written as

s- (VL) = =k, (1, - I,). (h

Because of the line structure of the vibration—rotation bands of infrared-active gases, the spectral absorption
coefficient k, is strongly varying with the wavelength 1. In addition, &, is in general also dependent on the
properties of the gas, as well as on the temperature and the partial and total pressure of the gas. A familiar
way, used by all band models, to describe the line structure of a vibration—rotation band is to employ the
dimensionless parameters S/d and y/d [12-15].

For a single spectral line the line intensity S is defined as
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F1G. 1. Definition of the line intensity S and half-width 7.




The harmonical transmission model: a new approach 1873

As shown in Fig,. 1, y represents the half-width at half-height of the spectral line. The vibration-rotation bands
of gases consist of an array of spectral lines, which under usual thermodynamic conditions overlap at least
partially. Similarly to a single line, an equivalent half-width y and line spacing @ can be defined for an array
of a few lines [13]. For the majority of the gases, that give a significant contribution to the radiative heat
transfer of combustion processes, the value of

S 1 ;
QZM‘LAkAdA (3)

represents the mean absorption coefficient, which the equivalent half-width y and the equivalent line spacing
d can be computed [16, 17] or can be taken from tables [13].
By use of band models a mean transmissivity

1
f=— di 4

A L ! “)
can be determined. In general, the mean transmissivity 7 depends on the quantum mechanical parameters S/d,
y/d and the optical pathlength.

3. ANALYSIS: THE HARMONICAL TRANSMISSION MODEL (HTM)

From a quantum mechanical analysis of the absorption process of two-atomic gases [16], it can be shown
that the line structure of a vibration—rotation band consists of nearly equally spaced spectral lines of the same
line intensity S and half-width y. Such a regular structure is also a good approximation for linear, symmetrical
three-atomic molecules like carbon dioxide. Therefore, the adequate band model to describe the absorption
behaviour of such gases is the regular Elsasser model.

By the Elsasser band model, the structure of a vibration-rotation band is assumed to consist of regularly
spaced lines of equal intensity. The lines show a Lorentz profile and do partially overlap. The absorption
coefficient of such an Elsasser band is given by (see Fig. 2)

: Y
sinh 27~
ALy S d
ki,Elsasser <¢) =2r —> = E. (5)

d | o
cosh 27% ) (e®+e %)

The derivation of the HTM is based on the fact that the absorption coefficient &, of a vibration—rotation band
shows a periodic structure over a narrow wavelength interval. Because of the periodicity of the line structure,
the absorption coefficient k, and the spectral intensity /; are expanded into complex Fourier series
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F1G. 2. Line structure of a vibration—rotation band (Elsasser band model).
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where

Al
¢ =27I7.

As the spectral intensity of the black body 1, ; is not varying in the narrow wavelength interval [0 < Ai/d < 1],
the expansion of I, ; in a Fourier series contains only zero-order terms

Im‘((/)) = Iy (8)

The coefficients g, of the Fourier expansion of the absorption coefficient (equation (6)) are determined from
equation (5) using a least-square fit

] 2n
9n = Q%Jp o kA‘.F.lmsscr e i d¢ (9)
The resulting coefficients are
S
o= (10a)
S e
gr=g = e (10b)
S ,
g2=g 2= g'e*“"“’"‘” (10c)
S
Gn=gon= e O (10d)

Because k; gisaer 18 Symmetrical to ¢ = =, it is evident that the imaginary part of the Fourier coefficients g,
vanishes. Therefore, the complex expansion of k; can be written as a real one

k,=go+2g,cosdp+2g, cos2¢p+---. (11

In Fig. 3 it is shown how the line structure of an Elsasser band is approximated by the HTM (equation (11))
of first and second order.

The Fourier expansions of the absorption coefficient and the intensity (equations (6) and (7)) are inserted
into the monochromatic equation of radiative transfer (equation (1)) and the equation of radiative transfer is
averaged over the period interval [¢p = 0, ¢ = 2x]. Because of the orthogonality relation of the Fourier series,
averaging in the sense of a least-square fit is achieved by multiplying the equation of radiative transfer by e"*,

wheren=---—2, —1,0, 1, 2--- and integrating from ¢ = 0 to 2=
j (equation (1)) - d¢. (12)
p =0

As a result of that quadrature scheme, a coupled system of transfer equations for the complex Fourier
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Fi1G. 3. Line structure as approximated by the HTM for y/d = 0.12.
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coefficients of the intensity Fy, F,, F_,, ... is obtained
F72 . e go g_l g_z ‘e RS - F72 0
F_, g1 G G- G2 F_, 0
s* | V| F, =—|"" g2 9 Go G- g-2 " Fy | — | L, . (13)
F, o g g o g F, 0
F, T N N N F, 0
L) |- : : : : : UL | L)

Equation (13) can be written in a short form as

s (VF) = —G(F-1,)).
It should be noted that the intensity vector F as well as the absorption matrix G are dependent on wavelength.
The absorption matrix G is complex, hermitian and of the Toeplitz type [18].

(14)

4. ONE-DIMENSIONAL RADIATIVE TRANSFER USING THE HARMONICAL TRANSMISSION
MODEL

For the one-dimensional case, an analytical solution of equation (13) can be derived. Under the assumption
that the incident intensity at x = 0 is constant over ¢ = 2n(A4/d) and that there is no emission of radiation
(I, = 0), an expression for the spectral mean transmissivity can be derived from the HTM. The spectral mean

transmissivity can directly be compared to band models.
In order to derive the mean transmissivity from the HTM, the solution of equation (13) in the form

] T A | A
F, e go gL ga e e F ,
q | F g g 9 g2 | Fa
dx Fol=—=1"9: g1 9o 9 92 ' Fy (15)
F, ot gy 90 Yo Gy F,
F‘2 g2 gl g(l I.‘2
I N I R

with g, given by equations (10a)—(10d) and with the initial conditions
;={l—0 fori=0 (16)
0 fori#0

is required.
If the g, are chosen according to equations (10a)—(10d), the absorption matrix G becomes symmetrical and

real. In this case the system of equations (equation (15)) can be decoupled for the first- and second-order
approximation. In this paper only the first-order approximation is considered. For a first-order approximation

equation (15) can be decoupled by the transformation

F go 91 0 F_,
diH*' Foil=—H"'|9 9 9 |\HH | F a7
X

F, 0 g1 9o F,
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1 -1 =1
2J2 22 22
H=| 1} 0 5 (18)
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oy
J2 J2

H'=|-y2 0 2 |. (19)
1 !

-] -

V2 J2
The solution of the resulting decoupled system

1 1

Fo+ (F\+F_) Fo+ (Fi+F_))
V2 GotJ2, 0 0 V2
d 1 JaF-F.) | _ 0 g 0 J2F -F_) (20)
dx 1 1
Foe — (F\+F ) 0 0 go=20u) | Fom ——(F\+F_)
V2 J2
for the initial condition (equation (16)) is
Fo= %]’0. [e\(ywv?y.)x+e¥(.q‘,fv’2.q‘)x] (2
11 . , ,
— = J [e— 90tV 29X __a— (g~ 29,)x
F, =F_, 2 Iy [e e 1. (22)

Since F| is the spectral averaged value of the intensity, the spectral averaged transmissivity 7, r, which results
from the HTM, is defined by

F
Tyt = ITO = e %" cosh (\/29,%) (23)
0
or with the use of equations (10a) and (10b)
= —(Sid)x — (2n(y/d)) S
Tyt =€ cosh { /2e~ (" 25 (24)

This is a very simple formula to describe the spectral averaged transmissivity of a vibration-rotation band
with equally spaced lines of the same intensity.

In a similar way also a closed-form expression has been derived for the second-order approximation. Figure
4 illustrates a comparison of the transmission curves of the Elsasser band model and the HTM of zeroth, first
and second order. From the comparison of the transmission curves it can be seen that even the HTM of first
order gives quite a good approximation to the Elsasser model, and that the HTM of second order is in nearly
perfect agreement to the Elsasser model with the added advantage of more accessible computation.
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FiG. 4. Comparison of the transmission curves.
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5. MULTIDIMENSIONAL RADIATIVE TRANSFER USING THE HARMONICAL TRANSMISSION
MODEL

For multidimensional radiative transfer calculation, the system of differential equations (equation (13))
must be solved on the multidimensional domain. The coefficients of the matrix G are taken from e?uations
(10a2)—(10d). In a first-order approximation the set of three decoupled differential equations

1 1

Fo+ (F\+F_)) Fo+ (F\+F_))
\/2 g0+\/2g, 0 0 ‘/2 1.
st |V J2AF-F) _ 0 o 0 . V2E~F) | -1
1 1
Fom (Pt Fo) 0 0 go—+29 Fam Pt b
(25)
must be solved.
For ideal diffusely reflecting walls, the boundary conditions are
2n
Fo@") = (1 =) (@7)+ £ j __ R@)me)de (6)
2n
[FiQ*)+F_(Q")] = %L__ , [Fi{Q7)+F_,(27)] (n,27)dQ 27
2n
[FI(Q)—F_(Q")] = QL__ . [Fi(Q7)—F_(27)] (n,Q27) dQ. (28)

The direction vector ~ points to the wall and Q" points away from the wall. The direction of nis perpendicular
to the wall and points away from the wall (see Fig. 5).
With the approximations made here, it can be shown that the second equation of the system

s (VIV2(F\ = F_)D) = —g0* [(J2(F\ —F_ )] (29

together with the boundary condition
2n
[FlQ*)—F (Q%)] = E‘L_ . [Fi(Q7)—F_,(Q7)]-(n,27) dQ (30

has the trivial solution
(Fi—F_)=0. (3D

This fact i1s easily understandable, when the vanishing sine terms in the Fourier expansion of the absorption
coefficient are considered. Therefore, also no sine terms in the Fourier expansion of the intensity should be
expected, which is formally expressed by F, = F_,.
Thus it is sufficient to solve the remaining two differential equations
1

2

1
Fo—ﬁ(Fl+F~l)

(Fi+F ) Fot —(F+F )

- _[90+~/ 90 ] V2 - [1""] (32)
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FI1G. 5. Definition of %, Q~ and n.
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together with the boundary conditions

Fo(Q™) = (1-p)1, ,(Q*) + %L‘ Fo(©27) - (n,Q7) dQ (33)
2n
[1”|(Q*)+1‘"1(Q*)]=g£2 ) [Fi7)+F_(Q7)] (n.27) dQ. (34)
If the substitutions

A =Fo+—l'-(F|+F7|) (3%

\/2
B=Fom o (F+F_)) (36)

V2
a=go++/29, (37)
b=go"\/2§]| (38)

are introduced, the resulting equations show the same formal structure as the monochromatic equation of
radiative transfer in a participating medium (equation (1))

s (VA) = —a(A-1,,) (39)
AQT) = (1=p) (Q7)+ gL . A(Q7)" (n,Q7)dQ (40)
and
s (VB) = —b(B—1,,) (41)
2n
B@) = (1=}, (@) + ij BE@)(0)do (42)

Here, the main advantage of the HTM is obvious. The resulting equations are of the same mathematical form
as the monochromatic equation of radiative transfer (equation (1)). Therefore, any differential method, which
is usually applied to solve the basic equation of radiative transfer (equation (1)), may also be used to solve
equations (39) and (41), resulting from the HTM. The only difference arising from the employment of the
HTM is, that two equations (one for ‘absorption coefficient’ ¢ and one for b) have to be solved simultaneously.

From the solutions 4, B of these two equations, the line structure of the spectral intensity at every local
position can be computed from

| 1
1§) = 5 (A+B)+ (4= B)-cos (4) (43)
N
where
¢ = 2néd@ (44)

6. REGIONS OF VALIDITY

The coefficients g, of the Fourier expansion of the absorption coefficient k; are determined from equations
(10a)—(10d). If the line structure parameter y/d is small and the order of approximation is not chosen high
enough, it is possible, that the absorption coefficient might be negative in the interval [¢ = 0, ¢ = 2x], as
shown in Fig. 6.

To avoid negative values of k,, the order of approximation must be chosen according to Table 1.

As y/d largely depends on total pressure, the suitability of different orders of approximations depends on
total pressure. The regions of total pressure, to which the different orders of approximation are applicable,
can be estimated, if a dilute mixture of the infrared-active gas in nitrogen is assumed (see Table 2). The values
of y and d for CO and CO, are taken from ref. [13].
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FiG. 6. Negative value of k; for y/d = 0.08 and first-order approximation.

Table 1. Region of validity of the different
orders of approximation

v/d
First order >In2/2n = 0.110
Second order =In ¥4n = 0.0781
Third order 20.0691

Table 2. Regions of total pressure for application of the
HTM

Prowar [atm] at 300 K
COat4651 ym  CO, at 4255 ym

First order =6.7 >0.55
Second order =4.7 >0.39
Third order =4.2 >0.34
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MODELE HARMONIQUE DE TRANSMISSION: APPROCHE NOUVELLE DU CALCUL
DE TRANSFERT RADIATIF DANS LES GAZ EN TENANT COMPTE DE
L’ELARGISSEMENT PAR PRESSION

Résumé—Une nouvelle méthode, le modéle harmonique de transmission (HTM), a été développée en
tenant compte de I'effet de I'absorption gazeuse a structure linéaire dans les calculs de transfert radiatif
multidimensionnel. La méthode est dérivée d’un développement du coefficient d’absorption et de I'intensité
spectrale en série de Fourier et d'une adaptation par moindres carrés. Pour le cas monodimensionnel, une
solution analytique est obtenue de la transmittivité spectrale moyenne qui peut étre comparée directement
aux modeles de bandes. Pour le cas multidimensionnel, on présente un systéme d’équations différentielles
linéaires qui est de la méme forme mathématique que I'équation du transfert radiatif. Par suite, toute
méthode numeérique convenable pour la résolution de I'équation du transfert radiatif peut étre aussi
employée pour résoudre 1’équation différentielle résultant de la HTM.

DAS HARMONISCHE TRANSMISSIONSMODELL : EIN NEUES VERFAHREN FUR
DEN MEHRDIMENSIONALEN STRAHLUNGSAUSTAUSCH IN GASEN

Zusammenfassung—Es wurde eine neue Methode, das Harmonische Transmissionsmodell (HTM), entwick-
elt, das es ermoglicht, bei der mehrdimensionalen Berechnung des Strahlungsaustausches die Linienstruktur
im Absorptionsverhalten von Gasen zu beriicksichtigen. Die Herleitung der Methode basiert auf einer
Entwicklung sowohl des Absorptionskoeffizienten als auch der spektralen Intensitit in Fourier-Reihen
und einer anschlieBenden Approximation der Strahlungstransportgleichung im Sinne kleinster Fehler-
quadrate. Fiir eindimensionale Probleme ergibt sich eine analytische Lsung fiir die mittlere Transmission,
die direkt den Bandmodellen gegeniibergestellt werden kann. Bei mehrdimensionalen Problemen wird
ein System von Differentialgleichungen angegeben, dessen Gleichungen dieselbe mathematische Struktur
aufweisen wie die Strahlungstransportgleichung. Somit kann jede numerische Methode, die zur Lésung
der Strahlungstransportgleichung geeignet ist, auch zur Losung des Differentialgleichungssystems, das sich
aus dem Harmonischen Transmissionsmodell ergibt, eingesetzt werden.

TAPMOHUYECKASS MOAEJIb: HOBBIM NMOAXOJ K PACYETY MHOTOMEPHOTO
PAJUALTMOHHOTI' O TEIUIONEPEHOCA B I'A3AX IIPU YYETE YHIMPEHUA [MOJ
OEACTBHUEM JABJIEHUS

Ammorams—Pa3paboTan HOBBI METOI, a HMEHHO, TAPMOHMYECKAs MOJEb MPOMYCKaHHA, OGBACHAIO-
mas 3¢xpexT MMue9aTOol CTPYKTYpHI NOTJIOIIEHHA B rade NPH PacieTax MHOTOMEPHOTO PaAHAIMOHHOIO
Temionepenoca. [IpeanokeHHBH METOA 3aKJOYaeTCs B Pa3IoNEHMH KOS(MQHIMEHTA TOTJIOIICHAS H
cnexTpaJibHOH HHTEHCHBHOCTH B psiabl ®yphe H HCNOJIL30BAHHH B YPABHCHHHM PAJHALMOHHOTO MEpeHoca
MeTOZa HAaHMEHBLIINX KBAApPaTOB, B 0AHOMEPHOM cilyyae NOJYHEHO AHAJHTHYECKOE PELIEHHE 1A Cpea-
HEro 0o cnexkTpy Ko3ddHureHTa NpONyCKaHHUA, KOTOPOE MOXHO HENOCPEACTBEHHO CPABHHTE C pe3yJibTa-
TaMH 30HHBIX Mopenelh. 1A MHOTOMEpHOTO CiydYas NpEACTBIeHa cucTeMa ARGGEPEHIBATLHBIX
ypaBHEHHMH, HMEIOIHMX TAKYIO K€ MATEMaTHYECKYIO GOPMY, KaK H YPAaBHCHHE PaJHallHOHHOTO NEPEHOCa,
CnenosaTtesbHO, VI pemieHrs nuddepeHnHalbHOrO YPABHEHHS, NOMYYEHHOrO HA OCHOBE rapMOHHYeC-
KO MOIEJH, MOXKET HCIONb30BATLCA JMOGOH YHCICHHBIH METOA, FOAHLIA [UIsi PELUICHHs ypaBHEHHs
PaIHALMOHHOTO TIEPEHOCA.



